If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2+5x-94=0
a = 3; b = 5; c = -94;
Δ = b2-4ac
Δ = 52-4·3·(-94)
Δ = 1153
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{1153}}{2*3}=\frac{-5-\sqrt{1153}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{1153}}{2*3}=\frac{-5+\sqrt{1153}}{6} $
| 8,4x-(3,2+2,4x)=20,8 | | 6.7x+625=44.89+25x | | 27y3=27y, | | 12/2x=11x+4/40 | | (10x)^2=4900 | | q^2-30q+5=1265-18q | | 9n-8=5n+13 | | 3x+57+7=90 | | a-3.5=24 | | 6x=5(3x-36) | | x-(3-4x-7)=12 | | X-(3-4x-7)=13 | | 2a-22.7=a-3.5 | | x+x=260-x | | (3x-8)=(4x+1) | | 10-(2-4x)=36 | | 3a+50=(6a-4) | | 3a+50=(6a-4 | | 2x+95=141 | | 6,3+(x-2,8)=4,1 | | 1900-6(p)=100 | | 75=6g-21 | | -45+x=29 | | x+234=419 | | x+2-4+3=7 | | 5(x)-1+3(x)=115 | | 2.1+(–3.7h)+1.9h–=1.4 | | –2x2–6x+5=0 | | 147=x+42+2x | | 30+(x-24)=46 | | X^2+y^2+11y+26=0 | | q^2-30q+5=3005-20q |